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Abstract:

(n,2n) reaction on 2*’Np has been
formulation.

A Montecarlo calculation of the isomeric cross section ratio for the

carried out based on the Hauser—Feshbach
i A standard energy—dependent optical model potential was used, with zero
deformation parameters and no spin—orbit coupling.

Investigation was made about the

role of the energy cut—off value, of the higher multipole (E2) tramsition, of the
gamma—ray versus second neutron emission, of the value of the spin cut-—off pgrametor

Tﬁe results give the correct qualitative energy dependence of the branching ratio.
w1th‘the assumption that the 1~ level is -the ground state. The spin cut—off valué
obtained indicates a less pronounced deviation of the nuclear moment of inertia from
the rigid-body value, with respect to older evaluations for high—mass nuclei.

(Montecarlo method, coupled-channel statistical model, (n,2n) reactions, isomeric

ratios, 2*7Np)

Introduction

In this work a Montecarlo method is used to
calculate the isomeric cross—section ratio of a
nuclear reaction involving the heavy nucleus
237Np.  When  statistical model calculation are
carried out, averaged quantities are used as
level spacing, gamma—widhts and neutron strenght
functions, mean neutron energy spectra, mean
angular momentum distributions and so on. Our
method makes use of probability distributions
derived from the exact coupled—channel cross
section formulation in a random walk process
which, starting from a certain incident particle
energy, leads the compound nucleus to emit
particles and decay to low-lying levels in
successive stages, and finally to jump to one of
the available isomeric states, giving a certain
value for the isomeric ratio.

Actually, we do not carry out a true
dynamical simulation of the collision and decay
processes: the Montecarlo method is here used in
a more abstract way, sampling and scoring the
value of the ratio of two integrals (the
so—called "target game"), rather than tracking
the particle path in the phase space, as for
example the Intranuclear Cascade Model does.

The (n,2n) reaction on the 237Np nucleus
was chosen as a tool for this program due to the
fact that, besides the relatively great number
of experimental results, it is impossible at
present to decide if whether the ground state of
the final product 2*®Np is the long—lived or the
short—lived one.

Statistical Model Formulation

Generally speaking, the relative
probability of forming one of the final states
in a neutron induced reaction depends on the
spin difference between the compound states at
each stage and the spin of the final states
themselves; the distribution of the spins of the
intermediate states is more and more broadened
with increasing number of steps in the
deexcitation process, but a certain connection
between the initial compound spin and the
formation probability of the isomers persists,
which is shown in the energy-dependence of the
isomeric ratios.

The basic so—called

result of the

Hauser—Feshbach model of the evaporation
theory (!) for the cross section o(a,a') from a
channel with quantum numbers a to a channel a'
can be stated as
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where the unprimed quantities are referred to
incoming channels, the primed quantities Lo
outcoming channels and the sum in the
denominator is carried on the whole set of
available decay channels a". Here J is the
compound nucleus total angular momentum, I and i
are the intrinsic spins of the target nucleus
and of the incident particle.

For a (n,2n) reaction, the complete
expression reads
(20¢1) r
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where the TI; are the level widhts and
G, = Te/Lg T is the -second neutron emission
factor.

in this work the transmission functions
have been analithycally defined as functions of
the complex factor fp , whose expression is
related to the real and imaginary parts of the
optical model potential used (2):

4. P, Im(f,)
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In the formula {3] the Py are the

penetrabilities of classical nuclear reaction
studies, multiplied by a conventional reflection
factor comprised between 2. and 3. to account
for the higher penetrability of a diffused—edge
potential with respect to a square well
potential, which jumps to =zero at the nuclear
surface.

The Montecarlo game

The first step of the method is to express
the basic elements of the calculation in a form
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suitable to perform the random sampling. We
start with the probability distribution function
(PDF) of the angular momentum of the compound
nucleus J. , given by (*)

[R3V2] JC'S (2 Jc'l)

P, .E) = 2/k? I T,a) [4]
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where S8 is the total
nucleon—nucleus system.

Summing up the p(J.,E) over the Jo values
will give the following, discrete cumulative
distribution function (CDF)

intrinsic spin of the

JC
PUJ,.E) =
© a0

p(J;.E) [5]

After unitary normalization, a random
number between 0 and 1 can be selected to give a
certain compound nucleus angular momentum value.

The second basic element is the following
joint distribution function, from which the
final angular momentum J of the residual
nucleus, as well as the orbital angular momentum
2 and parity (-1) carried off by the neutron,
are selected (*)
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which is again a discrete PDF like the (4] but
depends on the random variable J, too, and
gives the probability for a compound nucleus
with angular momentum Jo to emit a neutron with
orbital momentum £ giving a final state with
angular momentum J* ; the factor p(Jf)is given
by the equation (%)

—(141/2)2/202 £7J

p'(E.1) = p(E} (21¢1) e

where o is the spin cut—off factor.

Practically, a matrix with indices J¢ and
J¢ is constructed and then a sum over J¢ like
in [5} is carried off, so as to obtain a
discrete CDF for each initial compound nucleus
angular momentum value J¢ , to be. randomly
sampled to obtain the next step angular momentum
J
f

p(d;d . E) (8]

%
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In our sample calculation, gamma-ray
emission competition was accounted for between
the first and second neutron emission, by an
exponential probability distribution starting
from the value 1. at the thresold energy and
rapidly going to zero after some hundreds of
keVs: after the first neutron emission this
distribution is sampled to allow an E1 gamma ray
emission, with energy (%)

E, = 4(E/a-5/a%)1/? (9]

where a is the level density parameter in units
of MeV™!, that can be expressed as a linear
function of the mass number A.

The algorithm thus starts with a certain
incident neutron energy and angolar momentum;
then, the compound nucleus total momentum is

sampled from eq.[5]}. At this point, intermediate
gamma—ray emission eventually takes place. If
the excitation energy of the compound system is
above the (n,2n) threshold, a second neutron is
evaporated and the final total angular momentum

‘of the residual system is sampled from eq. [8],

as well as the orbital angular momentum of tlie
neutron, to adjust the parity of the residual
nucleus. Finally, the gamma-ray deexcitation

- cascade is followed starting from the last value

of J and E. Successive gamma-ray energies are
calculated from the formula [9]; the angular
momentum of the residual nucleus is calculated
according to a random sampling of the normalized
probability distribution function

~(J*1/2)2/20%
P(J) = (M*1) e (10}
for the available angular momentum values,
ranging from |J-£] to J+f for an angular

momentum £ of the photon.

The cascade is followed until some cut—off
energy is reached: then, decay into one of the
two isomeric states is chosen, according to the
smaller spin change.

The described procedure implies Lthe
statistical independence of the two successive
particle emissions, whose probability is simply
the product of the single-process probabilities.
However, the distribution {8] is conditioned by
the preceding step angular momentum Jg¢ and
excitation energy E (which, in turn, depends on
the selected neutron evaporation energy), which
acts as an upper limit of integration.

It is easy to recognize that the designed
algorithm samples the ratio

o(a,m)
a(a,g)

the o(a,m), o(a,g) being the cross section for
(n,2n) reactions ending to the metastable and
ground final states, given by expressions of the
type [2]: with this model, the discrete level
modelling is extended up to the continuum region
and the levels are ordered according to the
electromagnetic selection rules, with energies
distributed according to some known evaporation
spectrum.

The ?*7Np(n,2n)??Np reaction
The reaction
*Np + n —> *¢Np + 2n  [11]

with thresold at about 6.8 MeV, leads to the
formation of two 2?®Np isomers, one with
half-life of 22.5 hours, with quantum numbers
17, and the other with half-life of over 1x10°%
years, with quantum numbers 6~ (7). Informations
about the branching ratio of the (n,2n) reaction
can be obtained either from a—counting of the
daughter product of the decay chain 23€Pu, or
from PB-rays counting of irradiated ?®’Np
samples. In spite of the relatively large
number of experiments, at present it cannot be
decided if the ground state of 2?fNp should be
the short~lived 17 or the long—lived 6~ one. In
ref.(*) it was shown that, depending on the.
ground state isomer chosen, the branching ratio
should be qualitatively represented either by a
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curve starting from 0. at the thresold energy
and monotonically raising towards the measured
value of about R=0.65 at 10. MeVs, or by a
complementary curve starting from 1. at the
threshold, slowly descending towards the same
values.

Calculations with the method described in
the preceding section were performed, with the
approximations reported below, starting from the

fundamental state 5/2% of 2?’Np and considering.

s-wave incoming neutrons only. According to the
level scheme of ref.(?) for 23°Np, a small
amount (between 10 and 20 %) of E2 decay is
allowed.

The transmission functions T,(E) have been
computed with the help of the optical model
potential of ref.(?), excluding the spin-orbit
interaction and in the assumption that the Np
isotopes behave as spherical nuclei (i.e.
setting the B; deformation parameters to zero).
The same transmission functions have been used
for 2%SNp,?*’Np and 2*®Np isotopes. Partial
waves

TAB.1 — OPTICAL MODEL POTENTIAL PARAMETERS

S
- W e

p N E<

up to £=5 can be included in the calculation,
that was performed between 0. and 16. MeVs; in
this energy range the probability of a third
neutron emission is negligible.. No competition

from reactions other than (n,¥) was considered. ,

The transmission functions obtained (fig.l) show
that the even waves, altough initially of lower
importance due to the zero—energy dominance of
the odd neutron strenght functions in this mass
region, play a dominant role at higher energies,
notably above the (n,2n) thresold: around the
value E=6.8 MeV an evident crossing appears,
which is probably responsible for the opening of
the chance for second neutron emission.

1+ee
I
&
74

TE | :
H
. a
1E-01 ! ! 5.5 ] T T T
) 2 4 b ] 10 12 14 1b
neutron energy, MeV
FIG.1 - Transmission functions Tt(E) for the

first four partial waves.
The spectrum of the evaporated neutrons is
taken to be of the form (%) .
- L
a(E)E = o EY. exp(-E/ty, )dE/ty  [12]

where 0o is the cross section for the inverse
reaction, with the following values of the

parameters
£ =16/11 , tm = (11/12)E£/(1+21) [13]

The nuclear temperature £ was expressed as a
smooth function of the excitation energy E so as
to reproduce values ranging from 0.6 to 0.8 with
increasing energy, with corresponding greater
mean energy for the emitted neutrons.

The level density parameter was taken to be

a=0.142-A MeV?

The spin cut—off parameter was made
dependent ('%)

energy

g = 0.0888-(a-E)t/2.72/3 [14]

and it varies from 6 fi to 7 i for excitation
energies of the final residual nucleus between 3
and 6 MeV, which are the most probable values
before the start of the gamma—ray deexcitation.

The results of a sample Montecarlo run of
50,000 histories for ten incident neutron energy
are represented in fig.2, together with the
available experimental data. The CPU time was
about 10sec/point on a CRAY X-MP/48.
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FIG.2 — Results of a Montecarlo run with the 1~

level as the ground state, compared with the

available experimental data ( O ref.(*!),
@ref.('?), mref.('?), DOref.('*)).

In these calculations the ground state was
assumed to be the short—lived 17; this
assumption is the same of Kornilov ('Y, and is
in contrast with that of refs.('® ) and ('°).
The feature of correctly reproducing the
low-energy dependence of the branching ratio
must be noted. At higher energies the results
tend to saturate towards a 50/50 sharing of the
isomeric ratio, indicating the crudeness of some
of the approximations made. The statistical
error near the thresold reaches its higher
values, about 5 %; in the middle and high energy
range the error is negligible (about 1 %).

Influence of the model parameters

Some parametric tests were made on the
influence of the model parameters, i.e. the spin
cut-off value (see below), the E2 multipole
emission percentage, the number of partial waves
in the sums [1], and the problem—cut off energy.
It is seen that the branching ratio is almost
linearly dependent on these parameters, and
their influence is broadly constant in energy.

A final consideration can be made about the
long-lasting discussion about the values of the
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that governs the
of the nuclear

spin—cut off parameter o,
distribution of the spins I
levels.

In ref.('”) a statistical model calculation
with the Huizenga—Vandenbosch method was applied
to all the experimental available isomeric
cross—section ratios, not finding any particular
mass dependence of the o-values: all the data
were approximatively about 3 #i and 4 fi.  This
was explained with a progressive reduction of
the moment of inertia from the rigid body value
by up to 70 % in the heavy mass region, due to
the strong residual interactions between
nucleons.

In these calculations the o—value
optimized firstly by performing some trial
calculations with an energy independent o, and
then with the formulation [14], that gives the
fitted smooth variation with E'7* and is in
accord with the indication of ref.(!®). The
value obtained of 6-7 # is in line with other
recent results of statistical model calculations
on actinide nuclei (E.Fort ('®) has derived the
value of 6.5 H in very refined calculations of
the inelastic reactions on 2“'Am ). The
deviation of the moment of inertia from the
rigid body value turns out to be less pronounced
in actinide nuclei with respect to the trend
observed in ref.('”) for the high—A region.
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